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Abstract  

Pyrite, the most abundant sulphide mineral in the earth crust is mostly found in close association with arsenopyrite in most 

auriferous complex ore bodies. Previous studies on occurrence of gold in these sulphides has shown the preferential 

preconcentration of gold in arsenopyrite compared with pyrite. Notwithstanding, in the separation of gold bearing sulphides 

during froth flotation, a concentrate made up of both pyrite and arsenopyrite is obtained due to their similar characteristics and 

flotation response. Separation of gold predominated arsenopyrite minerals from less economical pyrite phase maximises 

downstream unit feed and improves financial performance of the operation. This paper briefly reviews attempts made thus far 

in exploiting subtle differences between pyrite and arsenopyrite for separation. The underlying reported flotation mechanism 

for both minerals is illustrated. 
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1 Introduction  

Froth flotation is an important step in concentrating 

mineral of interest from their gangue (Shean and 

Cilliers, 2011). The technique relies on differences 

in the surface wetting properties of minerals to 

separate them, that is, hydrophobic particles are 

floated as concentrate whereas the hydrophilic 

fraction are depressed and remain in the pulp as 

tailings (Farrokhpay, 2011).   

Sulphide minerals are important sources of metals 

extracted in the world (Vaughan, 2013). For 

refractory gold ores characterised by nanoparticulate 

inclusion of gold in sulphide matrices, pyrite and 

arsenopyrite are the major economic host (Arehart 

et al., 1993; McCarthy et al., 2018; Zhang et al., 

2016; Asamoah et al., 2014). These are jointly 

floated as concentrate for downstream processing. 

Notwithstanding, arsenopyrite and arsenic-rich 

pyrite have shown preferential association with gold 

compared to arsenic-free pyrite (Asamoah et al., 

2019a; Asamoah et al., 2019b; Chryssoulis and 

McMullen, 2016; Reich et al., 2005; Asamoah et al., 

2015).  This preferential occurrence is of the order 

arsenopyrite > arsenian pyrite > arsenopyrite. Reich 

et al. (2005) demonstrated the relationship between 

arsenic content and gold concentration from a 

compilation of SIMS and EMPA data from several 

deposits (Figure 1) and proposed an equation 

(Equation 1) which evince and define limits where 

native and solid solution gold is observed. Thus, the 

addition of a process step that separate gold-rich 

pyrite and arsenopyrite fraction from pyrite is 

preferred and holds promise in favoring project 

economics. Additionally, recalcitrant secondary 
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mineral formation due to complex relationship 

between some barren sulphides and other gangue 

phases will be eliminated in a highly selective float 

and its impact on downstream pretreatment process 

nullified (Asamoah, 2020; Asamoah et al., 2018; 

Asamoah et al., 2014). It is noteworthy that, 

although the formation of arsenian pyrite and 

subsequent gold occurrence is not fully understood 

at present, the inclusion of nanosized gold-bearing 

arsenopyrite in pyrite has been proposed (Reich et 

al., 2005; Simon et al., 1999; Wells and Mullens, 

1973). 

𝐶𝐴𝑢 = 0.02. 𝐶𝐴𝑠 + 4 × 10−5         (1) 

This brief review paper presents a summary of the 

attempts made thus far to separate pyrite from 

arsenopyrite. Control of pulp chemistry parameter in 

xanthate system is elucidated shedding light on the 

mechanism involved in the separation process. The 

use of depressants and selective collectors is also 

briefly discussed.  

 

 

 

 

 

 

 

Figure 1 Au-As SIMS and EMPA analyses of 

arsenian pyrite. Adapted from Reich et al. 

(2005) 

2 Surface Oxidation and Collector 

Adsorption Mechanism  

 
2.1 Oxidation of pyrite and Arsenopyrite 

Froth flotation is a physicochemical process and 

warrants an in depth understanding of mineral 

surface alteration typically in aqueous solution for 

flotation (Dong et al., 2019, Wills and Finch 2016). 

The mineral oxidation dictates the surface species 

formation as well as flotation kinetics (Bonnissel-

Gissinger et al., 1998; Corkhill and Vaughan, 2009). 

Presented herein is a brief classification of the 

surface oxidation species formed on pyrite and 

arsenopyrite in the acidic and alkaline regimes in 

aqueous solution. 

Under acidic condition, the surface of arsenopyrite 

is depleted in Fe and As coupled with surface 

restructuring forming a pyrrhotite-like phase 

(Buckley and Walker, 1988; Mikhlin and 

Tomashevich, 2005; Richardson and Vaughan, 

1989). Contrary to this observation, a surface 

dominated with As(III) and As(V) along with Fe(II)-

arsenite, Fe(III)-arsenate and minor elemental 

sulphur was observed by Costa et al. (2002). In a 

systematic study using XANES, a surface composed 

of Fe and As-rich overlayer with S-enriched layer 

beneath was confirmed by Mikhlin and 

Tomashevich (2005). On the other hand, Fe(II) and 

Fe(III) (hydr)oxides constituting about 19% of the 

total Fe was found on the surface of pyrite 

(Bonnissel-Gissinger et al., 1998). At low pH 

conditions, surface-bound thiosulphate in addition 

to elemental surface has been reported elsewhere 

(Druschel and Borda, 2006; McGuire et al., 2001; 

Schippers et al., 1996). Clearly, contradictory 

reports on arsenopyrite and pyrite surface species 

exists in literature under acidic conditions. 

Arsenite, Fe(II), Fe(III) and S are the main products 

of oxidation on arsenopyrite surface in alkaline 

solutions (Buckley and Walker, 1988; Richardson 

and Vaughan, 1989). In addition to an overlayer 

composed of Fe(III)-arsenite, Fe(III)-arsenate and 

Fe(III)-sulphate, Hacquard et al. (1999) 

demonstrated that arsenopyrite surface was heavily 

oxidised in a solution at pH 10. Using XPS, the 

authors observed an almost complete oxidation of 
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Fe(II) to Fe(III) and the oxidation of As(-1) to 

As(V). Polysulfide, sulfate and disulphide were also 

present on the mineral surface (Hacquard et al., 

1999).  

An increase in the growth of surface iron 

(hydr)oxides is observed on pyrite surface at 

alkaline pH with a stoichiometry close to that of 

ferric hydroxide (FeOOH) (Bonnissel-Gissinger et 

al., 1998). A predominance of OH groups generally 

populates the mineral surface in alkaline solutions 

(Bonnissel-Gissinger et al., 1998).  

Generally, ferric (hydr)oxide and arsenate species 

confer hydrophilicity on the mineral surface 

(Abeidu and Almahdy, 1980; Sirkeci, 1993). More 

so, they inhibit the collector adsorption and 

subsequent flotation (López Valdivieso et al., 2005). 

Conversely, elemental sulfur and pristine surface 

promote collectorless flotation and interaction with 

collector respectively (López Valdivieso et al., 

2005; Trahar et al., 1994). The flotability of the 

mineral at any given condition is dependent on the 

ratio of hydrophilic surface oxidation product and 

hydrophobic collector species (Bulut et al., 2002; 

Fuerstenau et al., 1969; Tao et al., 2018).  

 

2.2 Collector Adsorption Mechanism 

Thiol collectors, specifically xanthates are mostly 

used in the flotation of sulphides (Dunne, 2005) and 

require careful control of pulp chemistry parameters 

to achieve selectivity in flotation (Hu et al., 2010). 

To this effect, a wide range of investigations have 

been carried out to understand the collector 

adsorption mechanism (Hu et al., 2010). This 

endeavour has been extensive in systems where both 

gangue and mineral of interest share same 

mechanism of collector adsorption as is for pyrite 

and arsenopyrite. Amongst several mechanisms 

proposed for flotation of these minerals, the mixed 

potential model is widely accepted (Cheng and 

Iwasaki, 1992; Hu et al., 2010; López Valdivieso et 

al., 2005). This mechanism proposes an anodic 

oxidation of xanthate to dixanthogen on the mineral 

surface with a corresponding reduction of oxygen as 

the cathodic half equation. A more refined form of 

this mechanism suggests a simultaneous removal of 

ferric hydroxide from the mineral surface when 

dixanthogen is formed (López Valdivieso et al., 

2005).  The overall reaction is given in Equation 2 

and demonstrated in Figure 2. 

2𝐹𝑒(𝑂𝐻)3(𝑠, 𝑠𝑢𝑟𝑓) + 2𝑋− + 6𝐻+  

= 𝑋2(𝑙, 𝑠𝑢𝑟𝑓) + 2𝐹𝑒2+ + 2𝐹𝑒2+ + 6𝐻2𝑂  (2)  

Figure 2 Schematic of the adsorption of xanthate ion on mineral surface (López Valdivieso et al., 

2005) 
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3 Separation of Pyrite and Arsenopyrite  

3.1 Pulp Chemistry Control 

Pulp pH is one of the most significant parameters in 

deciding the flotability and selectivity of sulphides 

(López Valdivieso et al., 2006). For both pyrite and 

arsenopyrite, high flotation recoveries are achieved 

under acidic pH conditions proposed to be as a result 

of elemental sulphur as well as a high ratio of 

dixanthogen to surface oxidation product (Choi et 

al., 2013; Guongming and Hongen, 1989; Park et 

al., 2015; Zhang and Zhang, 2014) . Conversely, a 

window for selectivity exists between near neutral 

and middle alkaline condition. Chanturiya et al. 

(1998) investigated the floatabilities of pyrite and 

arsenopyrite with different mineralogical 

peculiarities and observed a decrease in adsorbed 

dixanthogen and subsequent depression of 

arsenopyrite whereas pyrite retained good collector 

absorptivity between pH 6.5-12 (Figure 3). Their 

observation agrees with the works of Li et al. (1992) 

and Abeidu and Almahdy (1980). Along this line, 

Kim (1993) floated pyrite while depressing 

arsenopyrite at pH 10.5.  Depression of the 

arsenopyrite in alkaline conditions was associated 

with an increase in surface oxidation product which 

has a higher coverage on arsenopyrite than pyrite 

treated under the same conditions (Abeidu and 

Almahdy, 1980; Li et al., 1992; López Valdivieso et 

al., 2006; Zhang and Zhang, 2014). It is important to 

note that, the depression of the minerals at alkaline 

conditions is nullified with an increase in collector 

concentration and hence a critical collector 

concentration is often required for high selectivity 

(Mu et al., 2016).  

From both electrochemical and thermodynamic 

standpoint, flotation of sulphides is strongly Eh-

dependent (Plackowski et al., 2012). Interestingly, 

pulp pH interplays with pulp potential in the 

flotation process. Typically, a unit increase in 

solution pH leads to a decrease in the oxygen 

reduction process by 59 mV (Bonnissel-Gissinger et 

al., 1998).  As a result, low pulp potentials are 

recorded in alkaline solutions.  

 

 

 

 

 

 

 

 

Figure 3 Floatability of pyrite and arsenopyrite 

as a function of pH (Asp-Arsenopyrite; Py-

pyrite). Adapted from Chanturiya et al. (1998) 

Using cyclic voltametric study, Vreugde (1982) 

prescribed the addition of oxidants to increase Eh 

and facilitate the formation of ferric hydroxide on 

arsenopyrite surface whereas pyrite remained 

unaffected. Park et al. (2015) proposed that, the 

flotation separation of pyrite from arsenopyrite was 

possible at high Eh because ferric arsenate; a stable 

hydrophilic species on arsenopyrite was affected by 

high Eh than pyrite. On the contrary, Kydros et al. 

(1993b) used reducing modifiers sodium dithionite 

and sodium sulphite to depress arsenopyrite while 

floating pyrite. A similar observation was made by 

Matis et al. (1992) who used sodium metabisulphite 

and hydrazium sulphate to control pulp potential. 

These showed promising results in the depression of 

pyrite from a bulk concentrate made up of pyrite and 

arsenopyrite although pyrite recovery was generally 

low (<60%). 
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3.2 Selective Oxidation 

Pyrite and arsenopyrite exhibit different oxidation 

kinetics (Ma and Bruckard, 2009; Monte et al., 

2002; Ran et al., 2019). Primarily, crystal structure 

differences and atom arrangement are the reason for 

this observation (Plaksin, 1959). Under acidic 

conditions, oxidation rate 3-4 orders of magnitude 

have been reported for arsenopyrite higher than 

pyrite (McKibben et al., 2008). Furthermore, using 

density functional theory, Fe is arsenopyrite has 

been shown to be more reactive than that found in 

pyrite (Li et al., 2015). Pursuance of this difference 

in their separation had led to the use of several 

oxidants in the flotation process.  

Chlorinated lime was used to depress arsenopyrite 

during the flotation of pyrite (Guongming and 

Hongen, 1989; Qian et al., 1993). The formation of 

a hydrophilic films made up of arsenate and sulphate 

was proposed to be a major contributor to the 

depression of arsenopyrite.  It can be concluded 

from these studies that, the surface oxidation 

product formed on pyrite was easily washed off 

whereas that on arsenopyrite was very stable. In the 

same way, potassium permanganate, hydrogen 

peroxide, sodium and calcium hypochlorite and 

potassium dichromate have been exploited (Chen et 

al., 2019; Herkenhoff, 1944; Lin et al., 2018; Monte 

et al., 2002; Subramanian et al., 2005; Tuteja et al., 

1992; Vreugde, 1982). An increase in surface 

oxidation species on arsenopyrite compared with 

pyrite was the assigned reason. Removal of the 

surface oxidation products using EDTA extraction 

can restore floatability (Wang and Forssberg, 1990). 

Inference based on differences in flotation 

recoveries for selected studies in which two or more 

oxidants were compared reveal oxidant selectivity in 

the order; Hydrogen peroxide > potassium 

permanganate > (sodium/calcium) hypochlorite > 

potassium dichromate (Chen et al., 2019; Tuteja et 

al., 1992; Vreugde, 1982).  

To achieve a high Au:S ratio, John (2017) used 

different acids (nitric acid and sulphuric acid) to 

ascertain their oxidation potential on pyrite and 

arsenopyrite and inform conditions for selectivity. 

Amongst the acids tested, nitric acid excelled in 

oxidising arsenopyrite more than pyrite, thus, its use 

in separation of pyrite and arsenopyrite was 

proposed. A novel approach which involves the use 

of low temperature oxygen plasma pre-treatment 

was also used to successfully depress arsenopyrite 

while pyrite was floated. The dissolution rate of 

arsenopyrite under this treatment was high than 

pyrite and aided in their differential flotation (Ran et 

al., 2019). 

Galvanic interaction between minerals and with 

grinding media has an impact on the oxidation of 

pyrite and arsenopyrite (Pozzo and Iwasaki, 1989). 

Pyrite is the noblest of sulphide minerals and acts as 

a cathode and enhances the oxidation of less noble 

minerals (Hu et al., 2010) as shown in Figure 4.  

 

 

 

Figure 4 Model of galvanic cells between 

sulphide minerals (Pozzo and Iwasaki, 1989) 

Monte et al. (2006) showed that pyrite rest potential 

was doubled while that of arsenopyrite drop by 50% 

when both minerals were placed in galvanic contact 

This observation corroborates with the work Urbano 

et al. (2008) who noticed that oxidation of pyrite in 

arsenopyrite was delayed and displaced to more 

negative potential using a combination of cyclic 

voltammetry and SEM EDS study. Additionally, the 

use of electrochemically active grinding media 
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contributes to high production of oxidised species on 

the surface of arsenopyrite (Huang, 2005; Huang et 

al., 2006). 

3.3 Depressants and Selective Collectors 

Magnesium ammonium mixture (MAA) made from 

a combination of MgCl2.6H2O + NH4Cl + NH4OH 

dissolved in distilled water has been employed in the 

depression of arsenopyrite (Abeidu and Almahdy, 

1980; Li et al., 2019; Tapley and Yan, 2003). An 

admixture of pyrite and arsenopyrite was separated 

in the presence of MAA by Tapley and Yan (2003) 

where the authors conjectured the formation of a 

hydrophilic AsO4NH4Mg.6H2O layer exclusive to 

the surface of arsenopyrite. Recoveries of 62.1% and 

25.5% for pyrite and arsenopyrite, respectively, 

were achieved under an optimal condition of 250 

mg/l MAA, pH 8 and 2.14 x 10-4 sodium ethyl 

xanthate concentration as shown in Figure 5. 

Similarly, flotation involving the use of several 

amines showed that 2-coco 2-methyl ammonium 

chloride was able to produce a concentrate rich in 

arsenic and gold, however, solids recovery was low 

(Mavros et al., 1993).  

 

 

 

 

 

 

Figure 5 Separation of pyrite and arsenopyrite 

in the absence and presence of MAA and pre-

aeration (Tapley and Yan, 2003) 

Kydros et al. (1993a) employed 

cetyltrimethylammonium bromide as collector in the 

selective flotation of arsenopyrite from pyrite. The 

pH of solution was held between 3.5-4.5 and 

required careful control of collector addition. 

Arsenopyrite and pyrite recovery of 87% and 40% 

were achieved in the concentrate. 

A combination of xanthate, 2-hydrooxypropyl ester 

diethyldithiocarbamino acid (HPEDEDCA) and oak 

bark extract (OBE) in a ratio of 1:0.5:(0.5-1.5) 

showed promise in separating pyrite from 

arsenopyrite (Chanturiya et al., 2011). The reagent 

recipe succeeded in depressing arsenopyrite but had 

little effect on the flotation of pyrite (Chanturiya et 

al., 2011).  Potassium cyanide has shown good 

depression potential for arsenopyrite (David and 

Quast 1991) . Qian et al. (1993) used a new reagent 

‘L’ to effectively depress arsenopyrite and float 

pyrite even in the presence of cuprous ions. 

Physisorption of Portland cement on arsenopyrite 

and subsequent depression aided in its differential 

flotation from pyrite (Kim, 1993). Patented by 

Beattie and Duteroue (1992), sulphitic depressing 

agent (SO2 gas) and xanthates were used to depress 

arsenopyrite at elevated temperature (40-70 oC). 

Chen et al. (2010) found the use of tertiary dodecyl 

mercaptan (TDM) as an effective collector in 

producing bulk arsenopyrite and pyrite concentrate. 

The high recovery (90.8%) and grade of concentrate 

(81.1 g/t from a feed assaying 2.9 g/t) suggests good 

selectivity with the collector. 

Thiol collectors other than xanthates have been 

investigated with proven selectivity. A two-stage 

flotation process involving dithiophosphate float at 

pH 11 and copper sulphate plus dithiocarbamate 

float developed by O'Connor et al. (1990) produced 

a concentrate with 74.8% arsenopyrite and 8.4% 

pyrite. Parameters such as aging of the ore and 

particle size had an impact on the selectivity. Wilcox 

et al. (2012) reported a sequential flotation scheme 

where pyrite was depressed at pH 11 using lime 

followed by copper activation and thionocarbamate 
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flotation of arsenopyrite at the same pH. 90% 

arsenopyrite and 18% pyrite recovery was achieved 

but no light was shed on the mechanism involved in 

the separation of the mineral pair. 

Sirkeci (1993) investigated the use of a chelating 

agent; hexylthioethylamine hydrochloride (HTA) in 

selective flotation of pyrite from arsenopyrite and 

quartz. Pyrite recovery into the concentrate was 

69.1% with 4.9% arsenopyrite recovery (Figure 6). 

The author proposed out of several possible 

adsorption mechanisms that, above pH 9.3, -NH+3 

group in HTA losses its proton so a lone pair of 

electrons is left in the -NH2 group. The electron is 

donated to Fe in a higher oxidation and per the 

crystal arrangement of these minerals, Fe fully 

exposed on the surface of pyrite compared to 

arsenopyrite facilitated the interaction of HTA and 

subsequent flotation of pyrite (Sirkeci, 1993; 

Sirkeci, 2000a; Sirkeci, 2000b). 

 

 

 

 

 

 

Figure 6 Flotation recovery of pyrite, 

arsenopyrite and quartz with 10-5 mol/l HTA 

concentration 

4 Conclusion 

Dixanthogen is the collector species responsible for 

the flotation of both pyrite and arsenopyrite using 

xanthates. Although both minerals interact with 

collector the same way, differences in the surface 

oxidation rate and extent can be employed in a 

selectively floating pyrite and depressing 

arsenopyrite. Separation using differences in surface 

oxidation is more feasible in the alkaline 

environment than acidic pH where contradictory 

mechanisms are reported.  

Use of chelating agents such as hexylthioethylamine 

hydrochloride have great potential in obtaining a 

high selectivity. An understanding of their 

interaction with the mineral surface would go a long 

way to help streamline the process for optimization.  

Interaction of amines with arsenates on the surface 

of arsenopyrite can also be exploited in the 

development of new reagents that are mineral-

specific in obtaining a finer separation. 
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